
Kafka: Our Trusty Database Companion

Franz Neubert

Me

• Software Engineer at Otto

• Javascript, Scala, Kafka, AWS

@Scarysize /Scarysize

Tracking @ otto.de

What

• User journey

• User interaction with features

• Personalized content

Why

• Measure performance of features & improve the
shop in a data driven way

• Personalize shopping experience e.g. via
recommendations

• Capture general business KPIs

Who

• Teams decide what to track

• Tracking is offered as a service to other teams

• Server- and client-side APIs

• Preprocessing of tracking data

• Access to enriched data for analysis

How

• Page impressions are tracked with additional
information in labels

• Labels are represented by key-value pairs

• There is no fixed set of available labels

• Examples:

• san_SearchTerm

• order_BasketItems

• 1415 different labels in 25 groups (prefixes)

Stack

• AWS

• Kafka Cluster with 6 Brokers, distributed across 3
availability zones

• About 20 Scala Services

• Handling ~400k req/min (client side tracking)

• Peaking ~1.5m req/min

• Data transport

• Application state persistence

• Access to tracking data

• Key-value storage

Documentation Service

• Enable analysts to document labels

• Make documentation data accessible to other
services

• Restore live back-ups into develop environment

documentor

Analysts

metadata-service
label description tracked labels

dynamo-db

• Easy API via Java AWS SDK

• Straightforward back-ups

• Simple to operate

• Easy API via Java AWS SDK

• Funny behaviour with Java Boolean types

• Straightforward back-ups

• No managed cross-region back-ups or access to
back-up data

• Simple to operate

• Complicated pricing options

• DynamoDB felt like an additional piece of
infrastructure we needed to understand and
manage

• We already operate a Kafka cluster and have high
expertise in working with it

documentor

Analysts

metadata-service
label description tracked labels

editor data metadata

label documentation

Receive new label information

Produce label info to Kafka topic

Update in-memory state

Produce update to public topic

• cleanup.policy: compact

• Enables log compaction

• Old messages will be compacted instead of being
deleted

• Label name used as the key

• → We can use Kafka as a simple key-value store

Data Access

• Access to documentation data via a separate
topic

• Keeps internal format separate from “public” API

• Clients can consume updates at their own pace

• Updates propagate instantly to downstream
consumers, no waiting for a scheduled HTTP call

Back-up

backup-lambda

CSV

s3 buckets3 bucket

cross-region replication

account-aaccount-b

hourly

Restore

Read all records from topic to restore

Produce tombstones for each key

Fetch back-up from S3

Produce records from back-up

Outlook

• Receive metadata via Kafka not HTTP

• Use event sourcing in order to maintain a change
log for each documented label

• Provide more information about labels

• Deprecation dates, start of use dates etc.

Thanks

@Scarysize /ScarysizeFranz Neubert

